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Abstract
The project Technology and Corpora for Speech to Speech Translation (TC-STAR) aims at making a break-through in speech-to-speech
translation research, significantly reducing the gap between the performance of machines and humans at this task. Technological and
scientific progress is driven by periodic, competitive evaluations within the project. For automatic speech recognition the Interactive
Systems Laboratories participated in the English European Parliamentary Sessions (EPPS) and Mandarin Chinese Broadcast News task
within these evaluations. In this paper we present our evaluation systems with which we participated in the TC-STAR Spring 2006
evaluation for the two tasks mentioned.

1. Introduction
TC-STAR - Technology and Corpora for Speech to Speech
Translation is a three year integrated project financed by the
European Commission within the Sixth Framework Pro-
gramme. The aim of TC-STAR is to advance research in all
core technologies for speech-to-speech translation (SST) in
order to reduce the gap in performance between machines
and human translators. To foster significant advances in
all SST technologies, periodic competitive evaluations are
conducted within TC-STAR for all components involved,
including automatic speech recognition (ASR) research, as
well as end-to-end systems. In the spring of 2006 ASR
evaluation the Interactive Systems Laboratories have partic-
ipated in the English European Parliamentary Plenary Ses-
sions (EPPS) (Gollan et al., 2005) and the Mandarin Chi-
nese Broadcast News evaluation.
Our systems were mainly developed and experiments per-
formed with the help of our own Janus Recognition Toolkit
(JRTk) which features the Ibis single pass decoder (Soltau
et al., 2001).

2. English EPPS
In this section we describe our English evaluation system
for the EPPS task. The models trained are centered around
a cross-adaptation and system combination scheme which
makes use of models that vary in preprocessing, cluster
tree for context-dependent models, and phoneme set. The
decoding scheme leads to a word error rate of 10.0% on
the official 2006 evaluation set. Further we describe how
we produced case-sensitive output that was enriched with
punctuation, a new requirement in this year’s evaluation.

2.1. Segmentation and Clustering

In last year’s evaluation the audio stream had already been
manually segmented into utterance like segments before
being shipped to the participants. This year’s evaluation
only gave large blocks of monolingual data without any fur-
ther segmentation. In order to process the data we first cut

it down into shorter segments, satisfying durational con-
straints, while not throwing away any part of the available
speech. Then those segments were clustered for the pur-
pose of unsupervised speaker adaptation during decoding.

Segmentation is performed using speech class posteriors
computed for each frame with a multi-layer perceptron
(MLP), with a frame size of 32ms and a frame shift of
10ms. The MLP has been trained to classify each frame
into speech or non-speech. The audio signal is being pre-
processed by calculating 13 mel-frequency cepstral coeffi-
cients (MFCC), their deltas and delta-deltas for each frame.
Nine consecutive frames are stacked together as input fea-
ture to the MLP (current frame, four frames to the left, and
four frames to the right); thus the total number of MLP
input nodes is 351. The number of hidden nodes used is
1000, and the number of output nodes is 2, one correspond-
ing to speech and the other corresponding to non-speech.
The output from the node corresponding to speech is taken
as the speech class posterior. After computing posteriors
for all the frames, using a threshold value of 0.5 regions of
non-speech are identified along with confidence values as-
signed to them. The confidence for a non-speech region
is computed based on its duration and average posterior
value. Then, the point of highest confidence in non-speech
is searched for in an interval between 0.5 and 20.0 seconds
after the starting from the last segment boundary; a first
segment break is made at that point. Then with that point
as the new starting point further points of segment breaks
are found in a similar manner until the end point is reached.
It is assumed that the points of high-confidence non-speech
would correspond to points of actual sentence breaks and
that there will be only one speaker in each segment.

The clustering process aims at grouping the speech seg-
ments into several clusters, with each cluster, in the ideal
case, corresponding to one individual speaker. A hier-
archical, agglomerative clustering technique is used. It
is based on TGMM-GLR distance measurement and the
Bayesian Information Criterion (BIC) stopping criteria (Jin
and Schultz, 2004). A Tied Gaussian Mixture Model
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(TGMM) θ was built based on the entire speech segments.
Then, one GMM for each speech segment was created
via adapting θ to each segment. The Generalized Like-
lihood Ratio (GLR) distance between two segments Sega

and Segb is defined as

D(Sega, Segb) = −log(
P (Xa ∪ Xb|θc)

P (Xa|θa)P (Xb|θb)
) (1)

where Xa, Xb are feature vectors extracted from Sega and
Segb, respectively. θa, θb, and θc are statistical models built
on Xa, Xb, and Xa∪Xb respectively. A symmetric distance
matrix is computed corresponding to the pairwise distances
between any two segments. At each clustering step, the
two segments with the smallest distance are merged, and
the distance matrix is updated after each merging. BIC is
used as the stopping criterion.

2.2. Preprocessing
For the evaluation system we used four different kinds
of acoustic front-ends: MFCC-I, MFCC-II, MVDR-I,
and MVDR-II. Two are based on the traditional Mel-
frequency Cepstral Coefficients (MFCC) and two are based
on the warped minimum variance distortionless response
(MVDR). The second front-end replaces the Fourier trans-
formation by a warped MVDR spectral envelope (Wölfel
and McDonough, 2005), which is a time domain technique
to estimate an all-pole model using a warped short time fre-
quency axis such as the Mel scale. The use of the MVDR
eliminates the overemphasis of harmonic peaks typically
seen in medium and high pitched voiced speech when spec-
tral estimation is based on linear prediction.
For training, both front-ends have provided features every
10 ms. During adaptation and decoding this was sometimes
changed to 8 ms. In training and decoding, the features
were obtained either by the Fourier transformation followed
by a Mel-filterbank or the warped MVDR spectral enve-
lope.
For the MVDR-I front-end we used a model order of
80. The resulting 129 spectral coefficients were then re-
duced to 30 with the help of a linear filterbank. Since
the warped MVDR already provides the properties of the
Mel-filterbank, namely warping to the Mel-frequency and
smoothing, a filterbank has not been used for the MVDR-
II front-end and the model order was just 22. The advan-
tage of this approach is an increase in resolution in low fre-
quency regions which cannot be attained with traditionally
used Mel-filterbanks. Furthermore, with the MVDR we
apply an unequal modeling of spectral peaks and valleys
that improves noise robustness, due to the fact that noise is
mainly present in low energy regions.
When vocal tract length normalization (VTLN) (Zhan and
Westphal, 1997) is applied this is either done in the lin-
ear domain for MFCC-I and MFCC-II, or in the warped
frequency domain for MVDR-I and MVDR-II. The front-
ends use 13 cepstral coefficients with the exception of the
MVDR-II front-end which uses 15. The mean and vari-
ance of the cepstral coefficients were normalized on a per-
utterance basis. In the case of MFCC-I, MVDR-I, and
MVDR II, seven adjacent frames were combined into one
single feature vector. For MFCC-II the cepstral coefficients

AM # Models # Gaussians front-end P Set
Ia 6k quinphones 23k MFCC-I P1
Ib 6k quinphones 23k MVDR-II P1
IIa 3k triphones 30k MFCC-I P1
IIb 3k quinphones 30k MVDR-I P1
IIc 3k quinphones 60k MVDR-II P1
III 16k quinphones 18k MFCC-I P2
IVa 3k quinphones 60k MVDR-II P1
IVb 3k quinphones 60k MFCC-II P1

Table 1: Overview of the trained acoustic models (AM),
giving the number of models, number of Gaussians, the
acoustic front-end used and the phoneme set (P Set) used

were combined with normalized signal energy, approxima-
tions of the first and second derivative, and zero crossing
rate. For MFCC-I, MVDR-I, and MVDR-II, the resulting
feature vectors were then reduced to 42 dimensions using
linear discriminant analysis (LDA). LDA was also applied
to the 43 dimensional MFCC-II feature vectors but without
reducing the feature vectors’ dimensionality.

2.3. Acoustic Model Training
We trained a variety of phoneme based acoustic models for
the final evaluation system. All of them are left-right hid-
den markov models (HMMs) without state skipping with
three HMM states per phoneme. All models were trained
on the same approx. 80h of English EPPS data provided by
RWTH Aachen within the TC-STAR project.
We trained acoustic models in different sizes for two dif-
ferent kinds of phoneme sets, referred to as P1 and P2,
and combined them with the acoustic front-ends introduced
in 2.2. P1 is a version of the Pronlex phoneme set which
consists of 44 phonemes and allophones while P2 is a ver-
sion of the phoneme set used by the CMU dictionary that
consists of 45 phonemes and allophones. Table 1 gives an
overview of the acoustic models trained.
For the models based on P1, at first context independent
acoustic models were initialized by taking the global mean
over all training data. Several iterations of Viterbi train-
ing were then applied in order to train the models. During
training cluster based Cepstral Mean Subtraction (CMS)
and Variance Normalization (CVN) was applied. Then con-
text dependent models of different sizes were obtained by
using our standard top-down clustering approach. All mod-
els were trained using incremental splitting of Gaussians
training, followed by 2 iterations of Viterbi training. For
all models we used one global semi-tied covariance (STC)
matrix after LDA (Gales, 1998). In addition to that feature
space speaker adaptive training (FSA-SAT) was applied on
top for models IVa and IVb.
For the acoustic model III, the only one based on phoneme
set P2, forced alignments for the EPPS training data were
obtained in the same way as for the ISL-Meeting task sys-
tem (Metze et al., 2004). A legacy, fully continuous cluster
tree trained for meeting and lecture recognition was used.
With that, fully continuous models using merge-and-split
training as well as two iterations of Viterbi training were
created. Thereafter the cluster tree was extended into a
semi-continuous cluster tree with 16000 distributions over
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corpus words weight
EPPS transcripts 750k 0.35
EPPS final texts 33M 0.54

Hub4 BN 130M 0.09
English UN 41M 0.02

Table 2: Overview of the different LM training corpora and
their interpolation weights.

4000 codebooks. FSA-SAT training was applied to the
semi-continuous models.

2.4. Language Model and Test Dictionary
For language model (LM) training we used data from the
following corpora: the EPPS transcriptions, the EPPS fi-
nal text editions, Hub4 Broadcast News data, and the En-
glish part of the UN Parallel Text Corpus v1.0. The spec-
ifications for the evaluation demanded the output to be in
British English (BE) spelling. However, many of the train-
ing corpora are either in American English (AE) spelling
or mixed. In order to compensate for that we substi-
tuted American English spellings by their British English
counterparts in all corpora by using respell, version 0.1
(http://membled.com/work/apps/respell/), which is based
on mapping tables build from ispell dictionaries. With
the help of the SRI Language Modeling Toolkit (Stol-
cke, 2002) we build separate 4-gram LMs with modified
Kneser-Ney smoothing on each of the corpora and interpo-
lated them together by tuning the interpolation weights on
the 2005 EPPS development data. The computed interpo-
lation weights and the size of the different corpora can be
seen in Table 2. Thereby we reached a perplexity of 93 on
the 2006 EPPS development data.
The British English vocabulary was built by using all words
from the EPPS transcripts and all words with more than
three occurrences from the EPPS final text editions, which
resulted in a case sensitive OOV rate of 0.43% on the 2006
EPPS development data, whereas hyphenated words were
split into their constituent parts.
For P1 the initial version of the recognition lexicon was
a merger of the callhome english lexicon 97061 dictio-
nary and the LIMSI SI-284 training dictionary. Fre-
quently missing words were added manually, all other miss-
ing words were generated automatically with the help of
the grapheme-to-phoneme conversion tool written by Bill
Fisher (Fisher, 1999). The resulting dictionary contained
50k pronunciations.
For P2 the pronunciation dictionary was generated by tak-
ing all pronunciation variants of known words from an in-
ternal dictionary and generating pronunciation variants for
new words with the help of Festival (Black, 1997) result-
ing in an overall size of 45k pronunciations. After that, we
added around 2000 bi- and tri-gram multi word pronuncia-
tions.

2.5. Capitalization and Punctuation
The capitalization of the recognition output was done in
a post-processing step after the actual decoding procedure
which produces case-insensitive output. The decision about
a word being upper or lower case is made with the help of

a case-sensitive 4-gram language model which is an inter-
polation of models trained on the EPPS transcriptions and
the final text editions (see also 2.4.) Words are being cap-
italized from left to right, the language model score being
the decision criteria.
After capitalization the output was enriched with punctu-
ation with the help of a case-insensitive 4-gram language
model and hard coded rules based on pause duration infor-
mation. Punctuation marks (or in our terminology bound-
ary marks) that were inserted are full stop, comma, question
mark, and word boundary (WB), i.e. no punctuation mark.
The language model was computed on the EPPS final text
editions and the EPPS transcripts, while the pause duration
information was extracted from the ASR output by comput-
ing the gap between the end time and the start time of two
successive words. The hard coded rules based on the pause
information were used to define the set of possible types
of boundaries that can be inserted after a word. Following
rules were used:

- if pause > 0.7 sec then full stop or question mark

- if 0.03 sec < pause < 0.7 sec then full stop, question
mark, comma, or WB

- if pause < 0.03 sec then WB

The final decision on which boundary mark to use was
made with the help of the language model scores. They
were computed by using a sliding window of width seven
such that the type of the current boundary B0 was estimated
based on the two words and the one boundary before and
after the current boundary.

w−2B−1w−1B0w+1B+1w+2

For boundary B−1 the punctuation mark type estimated in
the previous step was used. For B+1 all punctuation marks
allowed by the above rules were considered. The differ-
ence in WER on the reference transcriptions of the devel-
opment set for the case insensitive case and for counting
punctuation marks as words was approximately 1.0% abso-
lute better when automatically inserting punctuation marks
compared to inserting no punctuation marks at all.

2.6. Decoding Strategy and Results
Decoding is organized in five stages. Each stage consists
of several decoding passes whose outputs are combined
with the help of confusion network combination (CNC)
(Mangu et al., 2000). One decoding pass consists of a de-
coding with lattice generation and rescoring of that lattice
with a different language model weight and word penalty.
The decoding passes in the first stage are performed with-
out speaker adaptation; all other passes are adapted on
the output from a previous stage using Maximum Likeli-
hood Linear Regression (MLLR) (Leggetter and Woodland,
1995), Vocal Tract Length Normalization (VTLN) (Zhan
and Westphal, 1997), and feature-space constrained MLLR
(fMLLR) (Gales, 1997). Adaptation and decoding of the
systems was either done with the 10ms frame shift used in
training or an 8ms frame shift. In the end the output of
several CNCs was combined using ROVER (Fiscus, 1997).
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Table 3 summarizes the stages with their respective decod-
ing passes, describing which acoustic model, as given in
2.3., was used and which frame shift. It also gives the word
error rates achieved on the official TC-STAR 2006 develop-
ment and evaluation sets for the different stages and passes.

3. Mandarin Broadcast News System
In this section we describe our effort on the development
of the Mandarin Broadcast News transcription system. We
first introduce the acoustic model in Section 3.1., followed
by the language model in Section 3.2.. We describe the
development of language model adaptation in Section 3.3.
followed by the recognition results in Section 3.4..

3.1. Acoustic Modeling
The feature extraction of the Mandarin Chinese system is
similar to MFCC-I described in section 2.2.. The win-
dow size is 16ms and a feature vector is extracted every
10ms. The feature vectors are concatenated with 15 ad-
jacent frames, and LDA is performed to extract the final
42-dimension feature vectors. CMS, CVN, and VTLN are
applied on a per speaker/cluster basis.
Two acoustic models were built with different modeling
units: initial-finals (I-F) and phones. Both models are con-
text dependent and clustered using decision trees. The I-
F system has 3000 clustered triphone states and a total of
168k Gaussians; the phone system has 3000 septaphone
states with a total of 169k Gaussians. Tonal information
was incorporated in decision trees such that a single tree
was used for all tonal variants of the same phone.
Maximum likelihood training was used for both sets of
models. The mixtures were grown incrementally over sev-
eral iterations. A single global semi-tied covariance matrix
(STC) was employed (Gales, 1997). The acoustic models
were trained in a cluster adaptive way, which uses cluster
base feature space transforms (FSA-SAT). During testing,
speaker adaptation was carried out on the features (FSA),
and the Gaussian means (MLLR).
The data for acoustic models consists of two data sets: 27
hours of manually transcribed Mandarin Broadcast News
Data released by Linguistic Data Consortium (LDC), and
69 hours of quickly transcribed TDT4 Mandarin data. The
CMU segmenter is used to produce the initial segmenta-
tion (Siegler et al., 1997). The TDT4 data does not have
noise annotations and may include minor transcription er-
rors. The TDT4 segments in the original transcripts may
have more than one speaker per segment. They were re-
segmented at major silences located through forced align-
ment.

3.2. Language Modeling
Several corpora were used for our LM development: Man-
darin Chinese News Text, TDT{2, 3, 4}, the Mandarin Gi-
gaword corpus, the HUB4m 1997 training transcript and
some web-crawled data from RFA and NTDTV. Any text
falling into the black out period defined in the evaluation
guidelines was removed.
The Chinese text data was first preprocessed to normal-
ize for ASCII numbers, ASCII strings and punctuations.

Heuristic rules were devised in combination with a Max-
imum Entropy (Maxent) classifier to normalize the num-
bers. The classifier identifies whether a number is a digit
string (e.g. telephone number) or a quantity by using the
surrounding text. English words were mapped to a special
token “+english+”, and human noises (such as breath and
cough) to “+human noise+”. Environmental noises were
removed from the HUB4m training transcript. Punctuations
provided word boundary information for word segmenta-
tion, and they were removed after word segmentation.
We incorporated the LDC Name-Entity (NE) list into our
text segmenter’s word list. The NE list has different se-
mantic categories such as organization, company, person
and location names. This addition to segmenter’s word list
improved segmentation quality, which leads to more accu-
rate predictions in the LM.
The word vocabulary was derived from the segmented text
based on frequency count. The commonly used Chinese
character set of size 6.7k was added to the vocabulary. The
size of the resulting vocabulary is around 63k. We em-
ployed the count-mixing approach to train the word trigram
and 4-gram LMs. The mixing weight for HUB4m 1997
transcript is set to 6 while the mixing weight for other text
sources are set to 1. We used the SRI LM toolkit to train
the LM. The LMs were smoothed using modified Kneser-
Ney smoothing scheme. We pruned word trigram and word
4-gram counts by applying count cutoffs. The minimum
counts of word trigram and 4-gram are 3 and 5 respectively.

3.3. Language Model Adaptation
We applied dynamic language model adaptation from our
previous work (Tam and Schultz, 2005) using the Latent
Dirichlet Allocation model (Blei et al., 2003). The Latent
Dirichlet Allocation (LDA) model is a Bayesian model for
Latent Semantic Analysis (LSA) which tries to capture the
latent topics of a document corpus. In broadcast news, a
document usually refers to a piece of news story within
which the latent topics are consistent. One view of the LSA
model is a Bayesian extension of a mixture of unigram LMs
where the topic mixture weight vector θ is drawn from a
prior Dirichlet distribution:

f(θ;α) ∝
K∏

k=1

θαk−1
k (2)

where α = {α1, ..., αK} represents the prior observation
count of the K latent topics and αk > 0. As a “bag-of-
word” generative model, the LDA model assigns probabil-
ity to a document wn

1 = w1w2...wn as follows:

Pr(wn
1 ) =

∫
θ

(
n∏

i=1

K∑
k=1

βwik · θk

)
f(θ;α)dθ (3)

where βwik denotes the probability of a word wi given the
k-th latent topic. Optimizing the exact likelihood is com-
putationally intractable. One alternative is to optimize the
lower-bound of the log likelihood. It turns out that the lower
bound of the log likelihood has the following form:

Q(Λ,Γ) = Eq[log
f(θ, wn

1 , zn
1 ; Λ)

q(θ, zn
1 ; Γ)

] (4)
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stage/pass technique AM/pass adapted on frame shift Dev06 Eval06
1a Decoding Ia – 10ms 19.6% 15.9%
1b Decoding Ib – 10ms 19.4% 16.0%
1 CNC 1a,1b – – 17.8% 14.9%
2a Decoding IIa 1 8ms 15.6% 12.7%
2b Decoding IIb 1 8ms 15.2% 12.5%
2c Decoding IIc 1 8ms 15.5% 12.7%
2 CNC 2a,2b,2c – – 14.8% 12.2%
3a Decoding III 2 10ms 14.0% 11.0%
3b Decoding III 2 8ms 13.8% 10.9%
3 CNC 3a,3b – – 13.4% 10.5%
4a Decoding IVa 3b 8ms 13.5% 10.6%
4b Decoding IVb 3b 8ms 13.4% 11.0%
4i CNC 4a,4b – – 13.0% 10.3%
4ii CNC 4a,4b,3a,3b – – 12.8% 10.0%
5 ROVER 4i,4ii,3 – – 12.7% 10.0%
5.c Casing – – –.-% 11.1%
5.p Punctuation – – –.-% 16.7%
5.p+c Punctuation + Casing – – –.-% 17.7%

Table 3: Overview of the decoding scheme with the individual stages and passes, giving the acoustic model (AM) used, or combined
decodings respectively, stages adapted on, frame shift used, and word error rate on the 2006 development and evaluation sets

where q(θ, zn
1 ) is an approximate posterior distribution over

the latent variables, the topic mixture weights θ and the
latent topic sequence zn

1 given an observed document. In
Variational Bayes inference (Jordan et al., 1999), the distri-
bution is factorisable and parameterized by Γ:

q(θ, zn
1 ; Γ) = q(θ) ·

n∏
i=1

q(zi) (5)

where q(θ) is a Dirichlet distribution over topic mixture
weights, and {q(zi)} is a set of multinomial distributions
over topic indices. Optimizing the auxiliary function Q(.)
can be performed using the VB-EM algorithm. The E-step
determines the parameters Γ of variational posteriors q(.)
and the M-step uses q(.) to re-weight the observations to
estimate the model parameters Λ. We only show the results
of the parameter estimations of a single document. Com-
plete derivations can be found in (Blei et al., 2003).
E-Step:

γk = λ · αk +
n∑

i=1

q(zi = k) (6)

q(zi = k) ∝ βwik · eEq [log θk] (7)

Eqn 6 and Eqn 7 are applied iteratively until convergence.
M-Step:

βvk ∝
n∑

i=1

q(zi = k)δ(wi, v) (8)

where δ(.) is the Kronecker Delta function. Parameters
of the Dirichlet prior {αk} can be determined using the
Newton-Raphson algorithm or gradient ascent procedure.
In dynamic LM adaptation, the idea is to have an adaptive
unigram LM in which the topic mixture weights are adapted
according to the decoded word hypotheses from the previ-
ous speech utterances. The topic mixture weights can be

stage/pass w/o LSA w/LSA
[1] SI (I-F) 19.6% 19.5%

[2] SAT (I-F) 15.8 15.1
[3] SAT (phone) 14.8 14.4

[4] SI (I-F) 14.1 14.1
[5] SAT (phone) 14.3 -

[5.1] SAT (I-F,phone,8ms) {14.4,14.7} -
CNC 13.9 13.8

[6] x-adapt (LIMSI) 12.4 12.0

Table 4: Character Error Rates (%) of the Mandarin BN
system on the dev06 set.

estimated by first running the E-step and normalizing the
topic posterior counts γk of each k-th topic:

Prlsa(w) =
K∑

k=1

βwk · θ̂k (9)

where θ̂k =
γk∑K

k=1 γk

(k = 1...K) (10)

The adaptive unigram LM is interpolated with the back-
ground N-gram LM in an on line fashion. The adaptive
unigram LM works like a cache-based LM. But instead of
caching the word counts in the history, we cache the latent
topic counts in the history. Since word hypotheses contain
recognition errors, caching the latent topic counts may be
less susceptible to reinforcing recognition errors back to the
LM. In our setting, we adapted the LSA-unigram LM using
the past 20-word window. The decaying factor λ is set to
0.4 in the E-step to compensate for the topic switching in a
BN show. We determined these tuning parameters by min-
imizing the perplexity of the RT04 development set.

June 19–21, 2006 • Barcelona, Spain TC-STAR Workshop on Speech-to-Speech Translation

143



3.4. Decoding Strategy and Results
We employed a multi-pass decoding strategy by cross-
adapting our I-F system with our phone-based system. We
performed the first-pass decoding using the speaker inde-
pendent I-F models. Then we used the decoded hypothe-
ses to adapt the speaker-adaptive I-F models and performed
the second-pass decoding. The speaker-adaptive decoding
was performed with VTLN, constrained MLLR and model
MLLR similar to the decoding strategy employed in our
English system. In our third-pass decoding, we applied
the speaker-adaptive phone models, followed by the con-
strained decoding using the speaker-adaptive I-F model.
We then combined the lattices from the second to fourth de-
coding passes using CNC. Finally, we exchanged our word
hypotheses after CNC with LIMSI’s Mandarin BN system
to cross-adapt our speaker-adaptive I-F models. Table 4
shows the stage wise recognition results in character error
rates (CER) on the dev06 development set. The second col-
umn in the table shows the results from year 2005 without
LM adaptation and the third column shows the results from
year 2006 with LM adaptation using LSA. Results showed
that we successfully reduced the number of decoding passes
without degradation in recognition performance. LM adap-
tation helps for the second and third decoding passes, but
we observed no performance gain at the fourth decoding
pass. However, when we combined the word lattices gener-
ated from the speaker-adaptive decoding passes using CNC,
we observed a slight performance gain. On the other hand,
when we cross-adapted our I-F system using LIMSI’s hy-
potheses, we achieved 0.4% absolute CER reduction due to
LM adaptation.

4. Conclusion
In this paper we have described our speech recognition sys-
tems with which we have participated in the second TC-
STAR evaluation campaign in spring of 2006. In this cam-
paign the Interactive Systems Laboratories have partici-
pated in the English EPPS evaluation, obtaining a word er-
ror rate of 10.0% and in the Mandarin Chinese Broadcast
News evaluation, achieving a word error rate of 9.8% in
cooperation with LIMSI.
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