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Abstract. This paper presents results of a combination of two algo-
rithms for the fast and effective support of multilingual speech in a dialog
system. Previously only results of the individual algorithms were pub-
lished. The Multilingual Weighted Codebook algorithm generates sets of
Gaussians (codebooks) that cover multiple languages well, especially it
was designed to provide optimal performance for one designated main
language in the system. It makes sense to operate with such a main lan-
guage, as human users also prefer the use of their native language when
it is possible. The second algorithm projects a Gaussian mixture distri-
bution to a new set of Gaussians. With this algorithm, time and cost
intensive iterative reestimations of a distribution for one speech sound
are avoided. Together both algorithms allow a much faster provision of
acoustic models for multilingual speech recognition with semi-continuous
Hidden Markov Models that are based on one single global codebook.

1 Introduction

It is a frequent problem that spoken dialog systems have to handle speech from
multiple languages. One example are speech operated navigation systems that
should allow destination input in many countries. In the near future companies
are also preparing for the rollout of music players that are operated via speech.
A major problem in these examples is that the dialog systems operate with con-
strained resources, and current speech recognition technology typically requires
more resources for each language that has to be covered.

An additional problem in the above examples is that the users are not perfect
in the pronunciation of the foreign city names or the foreign song titles. They
utter the utterances with non-native accent. This accent is amongst others in-
fluenced by the native language of the user, and referred to as main language in
the rest of this work.

A common approach to reduce the resource need for each additional lan-
guage in the speech recognition system is to model similar sounds in different
languages with the same models. In this approach, phonemes from different lan-
guages can share one acoustic model when they have the same IPA (International



Phonetic Alphabet, [Ladefoged, 1990]) symbol. Examples are [Weng et al., 1997]
[Koehler, 2001] [Schultz and Waibel, 2001] [Niesler, 2006]. The sharing can also
be based on acoustic model similarity determined by a distance measure. For ex-
ample, [Koehler, 2001] [Dalsgaard et al., 1998] measure the log-likelihood differ-
ence on development data to determine the similarity of phonemes, as motivated
by [Juang and Rabiner, 1985].

The advantages of all these approaches are that they cover many languages
with much less parameters than a combination of all the monolingual recognizers.
Thus they are very appropriate in all cases where one really needs all languages
equally. However, in the examples mentioned at the beginning, the languages
are not of equal importance. There is one device, which is typically owned by
one user with one native language and that language is more important for the
system than the other languages as the user usually utters commands, spellings
and digit sequences in that language. Hence it is vital for a commercial system
to recognize this main language with maximum performance.

Motivated by [Koehler, 2001] who showed that parameter sharing achieves
better performance than sharing of full Hidden Markov Models (HMM), we
developed the idea of Multilingual Weighted Codebooks (MWC) for a semi-
continuous HMM [Raab et al., 2008a] [Raab et al., 2008b] . The advantage of
semi-continuous HMMs is that all HMMs use one codebook with a small number
of Gaussians compared to the number of Gaussians that are used in continuous
HMMs. However, the performance of a semi-continuous HMM with a suboptimal
codebook from a foreign language is significantly reduced [Raab et al., 2008b].
The MWCs solve this problem by adding the most different Gaussians from the
foreign language codebooks to the main language codebook. The MWCs were
shown to help for native and non-native speech [Raab et al., 2008b].

The problem is that MWCs depend on the actual language combination.
This leads to an unacceptably high training effort for more than a couple of
languages, as the acoustic models have to be retrained for each MWC, thus
for every language combination. A projection of a GMM that is defined on one
set of Gaussians to another codebook solves this problem, as it can project the
once trained Gaussian mixture distribution to the Gaussians that are currently
available. Thus, once a monolingual acoustic model exists for each language, the
Gaussians can be exchanged without retraining with this projection.

At first, we experimented with mathematically optimal projections with re-
spect to the L2 distance [Raab et al., 2009b]. However, we later showed that sim-
ilar performance can be achieved with an approximated projection that considers
only the expected values of Gaussians and HMM states [Raab et al., 2009a]. This
projection has the additional advantage that it runs in almost no time (fractions
of a second) for the projection of one language to a new codebook.

In this paper, we now present the combination of the MWC and the projec-
tion algorithm. Together they form a scalable mechanism that allows to rapidly
provide speech interfaces for new language combinations, with similar perfor-
mance than our baseline system with one monolingual codebook. At the same



time, the immense additional effort for the provision of systems has significantly
been reduced.

The remainder of this paper is organized as follows. In the next section we
present our multilingual baseline system. Section 3 describes the two algorithms
and their combination. In Section 4 the experimental setup is described. Section
5 presents the experimental results. Finally, a conclusion is drawn in Section 6.

2 Benchmark and Baseline System

The monolingual systems are benchmark systems, as they are built to obtain
maximum performance on one language. The problem with running monolingual
recognizers in parallel is that the number of resources needed increases linearly
with the number of languages, as there is no parameter tying at all between the
languages.

Our baseline system reduces the resource need by keeping only the codebook
of the main language. Then all additional language HMMs are added to the
acoustic model. However, they have to be retrained, as they were initially trained
on another set of Gaussians. Through the application of only one codebook the
number of Gaussians remains the same, thus not requiring any more resources.
Only the evaluation of the additional HMMs needs some more resources, but
not too much as an HMM evaluation reduces to a multiplication of two vectors
in a semi-continuous HMM system.

3 Proposed System

3.1 Multilingual Weighted Codebook

To improve the performance on the additional languages, the monolingual code-
book in our baseline system is replaced by a MWC. The MWC is basically the
main language codebook plus some additional Gaussians. Figure 1 depicts an
example for the extension of a codebook to cover an additional language. From
left to right one iteration of the generation of MWCs is represented.

The picture to the left shows the initial situation. The Xs are mean vectors
from the main language codebook, and the area that is roughly covered by
them is indicated by the dotted line. Additionally, the numbered Os are mean
vectors from the second language codebook. Supposing that both Xs and Os
are optimal for the language they were created for, it is clear that the second
language contains sound patterns that are not typical for the first language (Os
1,2 and 3).

The middle picture shows the distance calculation. For each of the second
language codebook vectors, the nearest neighbor among the main language Gaus-
sians is determined. These nearest neighbor connections are indicated by the dot-
ted lines. Our previous experiments showed that using the Mahalanobis distance
produces the best results [Raab et al., 2008a].



The right picture presents the outcome of one iteration. From each of the
nearest neighbor connections, the largest one (O number 2) was chosen as this
is obviously the mean vector which causes the largest vector quantization error.
Thus, the Gaussian O number 2 was added to the main language codebook.
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Fig. 1. Basic idea of Multilingual Weighted Codebooks

3.2 Projection of a GMM

The goal of this algorithm is to project a Gaussian Mixture Model (GMM)
distribution that is modeled with a set of Gaussians to another set of Gaussians.
In [Raab et al., 2009b] we presented mathematically optimal projections that
minimize the L2 distance between the reference distribution and the estimated
distribution. The reference distribution is a Baum-Welch trained state emission
probability defined on one codebook. However, in [Raab et al., 2009a] we could
show that similar performance can be achieved with approximated projections.
In this paper, we only introduce the best of the approximated projections.

This projection is based on a combination of the best match of expected
values of Gaussians and of HMM states. This projection maps all HMMs of all L
languages to one fixed set of N Gaussians (=Recognition Codebook, RC). Each
Gaussian N is represented by its mean µ and covariance matrix Σ.

The Gaussian map (mapG) is based on the smallest Mahalanobis distance
(Gaussian Distance DG).

mapG(N i
MCl) = N j

RC , 0 ≤ i < M l, 0 ≤ j < N, 0 ≤ l < L

j = arg min
k

DG(µi
MCl ,µ

k
RC ,Σ

i
MCl) (1)

The state map mapS is based on the minimum Mahalanobis distance (DS)
between the expected values of their probability distributions. The covariance
which is needed for the Mahalanobis distance is a global diagonal covariance ΣAll



estimated on all training samples. With DS we define our state based mapping
for each state s

mapS(si
l) = sj

RS , 0 ≤ i < Sl, 0 ≤ j < RS, 0 ≤ l < L

j = arg min
k

DS(E(si
l), E(sk

RS),ΣAll) (2)

with the main language states RS (=Recognition States).
The combined map mapG+S of the previous two mappings is defined as

mapG+S(si
l) =

γG+S mapS(si
l)+(1− γG+S)


w1

si
l
mapG(N 1

MCl)
w2

si
l
mapG(N 2

MCl)
...

wM l

si
l
mapG(NM l

MCl)


0 ≤ l < L, 0 ≤ i < Sl (3)

with the combination weight γG+S and the weight w for each individual Gaus-
sian. In this work γG+S was set to 0.5, and slowly decreased when more Gaussians
were added. This was done to account for the fact that the more Gaussians are
in the MWC, the better the Gaussian distance, as the MWC algorithm exactly
adds the Gaussian that have no match in the other codebook. This projection
projects a language with 1800 three state HMM models to a new codebook in 15
seconds, or in 0.3 seconds if some elements in the distance calculation like the
distances of all states to each other are precomputed [Raab et al., 2009a].

3.3 Combined System

All the systems without projections require significantly more resources and/or
effort. The resource need of the benchmark system increases linearly with the
number of languages, the training effort for the baseline system increases with the
number of languages squared. The MWC systems keep the low resource need of
the baseline system with increased performance, but increase the training effort
exponentially. However, the projections alone are maybe also not desirable, as
they perform worse than every other system

The question of interest is how well a combination of the MWC algorithm
and the projections works. This means that first an appropriate MWC is built
for the current task, and then the required HMMs are projected to the task.
This removes the additional training effort almost completely, and should still
give good performance due to the well matching codebook.

4 Experimental Setup

Our semi-continuous speech recognizer uses 11 MFCCs with their first and sec-
ond derivatives per frame. Monolingual recognizers for English, French, German,



Spanish and Italian are trained on 200 hours of Speecon data [Iskra et al., 2002]
with 1024 Gaussians in the codebook. The HMMs are context dependent and
the codebook for each language is different. Table 1 describes the native test sets

Table 1. Descriptions of the native test set for each language

Testset Language Words Vocabulary

GE City German 2005 2498
US City English 852 500
IT City Italian 2000 2000
FR City French 3308 2000
SP City Spanish 5143 3672

Table 2. Description of the non-native test sets

Testset Accent Words Vocabulary

Hiwire FR French 5192 140
Hiwire SP Spanish 1759 140
Hiwire IT Italian 3482 140
IFS MP3 German 831 63

and Table 2 the non-native test sets. The native tests are city names from an
in-house database. The Word Accuracy (WA) differences that the results show
between the languages are due to different noise conditions in the different tests.

The first three non-native test sets contain command and control utterances
in accented English from the Hiwire database [Segura et al., 2007]. The Hiwire
database was identified as the most appropriate existing and available database
after a review of existing non-native databases [Raab et al., 2007]. To indicate
that the language information in the test name only specifies the accent, the
language information is given after the test name. The last non-native accent
test was collected specifically for this work and contains Italian, French and
Spanish song titles names spoken by Germans.

5 Experiments

5.1 Native Speech

In this section native speech of five languages is evaluated, first with German
as main language, then in a second set of experiments with English as main
language. The codebook of the baseline system only contains Gaussians from the
main language, and the MWC systems always contain all Gaussians from the
main language. However, the MWC systems also add some additional Gaussians
for the language that is tested.



Figure 2 shows the Word Accuracies for city name tests. The x-axis indicates
both which test is performed as well as the size of the MWC that is applied. The
curves show that in the German test all three system perform equal, the MWC
based on the German codebook generated through the projections, the baseline
and the benchmark system. This is actually a strength of the MWC approach, as
commonly parameter sharing methods for multilingual speech recognition have
slightly negative impacts for all languages. This is not the case for the main
language in the MWC system.

The picture is different for the additional languages. Here it becomes evident
that benchmark systems are better than other systems with parameter tying
across languages. In the case that no additional Gaussians were added to the
codebook, the baseline system also outperforms the projection system. However,
when the two algorithms are really combined, and Gaussians are added before
the projection is executed, the combined system outperforms the baseline sys-
tem. This out performance requires some additional resources at runtime for the
additional Gaussians, but a provision of the combined system requires less effort
than a provision of the baseline system. The set of results that is missing in
this figure are the results of the MWC with a standard retraining. It is quite
certain that this would give better performance than the MWC performance
shown, but only for the experiments in this figure the same effort as building
20 monolingual recognizers would need to be done. In general it is unrealistic
to provide Baum-Welch trained MWC systems for many languages and all their
combinations today.

Scalable Architecture with Projection 7 on native Tests

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1
0
2
4

1
1
2
4

1
2
2
4

1
4
2
4

1
0
2
4

1
1
2
4

1
2
2
4

1
4
2
4

1
0
2
4

1
1
2
4

1
2
2
4

1
4
2
4

1
0
2
4

1
1
2
4

1
2
2
4

1
4
2
4

1
0
2
4

1
1
2
4

1
2
2
4

1
4
2
4

GE_City US_City FR_City SP_City IT_City

Codebook Size / Test Set

W
A

German Codebook Baseline Benchmark

Fig. 2. Performance of the scalable architecture on native speech of different languages
with German as main language



To verify that these results are not just due to some peculiarities of the Ger-
man codebook, the same experiments are redone with English as main language
in Figure 3. The main difference is that now nothing happens for the English
system, and it always achieves the benchmark performance. For the other tests,
the trends remain the same, the baseline system is better than projections alone
and the combined system can outperform the baseline when more Gaussians are
added. However, in general the performance is a little worse for the additional
languages as compared to the results with German as main language. We at-
tribute this to the fact that German has more phonemes than English, and that
there are thus more sounds that not well covered with an English codebook.

Scalable Architecture with Projection 7
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Fig. 3. Performance of the scalable architecture on native speech of different languages
with English as main language

5.2 Non-native Speech

This section evaluate the performance on non-native accents. The first three tests
are non-native English by Spanish, French and Italian speakers. The last test
contains song titles by Germans. The last test is also strongly accented speech, as
not all speakers were familiar with the language from which the name originated.
Figure 4 shows the performance on these four tests. A major difference to the
previous charts is that this time the main language was different for each test
set, as it was always set to the native language of the speakers. It is also the
case that no benchmark performance for the last test is given, as no monolingual
system can recognize speech from three languages.



Scalable Architecture with Projection 7 on non-native Tests
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Fig. 4. Performance of the scalable architecture on non-native English with, the main
language is always the mother tongue of the speakers

That the application of the codebook from the native language of the users
is a good choice is supported by the fact that this time the baseline systems
outperform the benchmark systems. This means that our systems are better
in the recognition of accented speech if they apply a codebook of the native
language of the speakers.

In the case of the speakers which were familiar with the spoken language,
the proposed system benefits from the addition of the additional Gaussians, and
comes close to the performance of the benchmark system when Gaussians are
added. In the case of the less familiar speakers in the IFS MP3 test, however,
the addition of Gaussians did not help. The performance on this test is also
worse than for the other tests, which might indicate that their speech is just too
different from the speech of native speakers of Spanish, French and Italian.

6 Conclusion

This paper has combined two of our previous algorithms for the support of mul-
tilingual speech interfaces in resource-constrained dialog system. The first algo-
rithm builds Multilingual Weighted Codebooks that allow the improved recog-
nition of many languages with semi-continuous HMMs. The second algorithm
allows the faster generation of a system with parameter sharing between lan-
guages. The results in this paper show the fruitful combination of these two
algorithms that allows to rapidly generate new acoustic models with high per-
formance for the required languages.
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