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Abstract
Our goal is to provide a multilingual speech based Human Ma-
chine Interface for in-car infotainment and navigation systems.
The multilinguality is for example needed for music player con-
trol via speech as artist and song names in the globalized music
market come from many languages. Another frequent use case
is the input of foreign navigation destinations via speech. In this
paper we propose approximated projections between mixtures
of Gaussians that allow the generation of the multilingual sys-
tem from monolingual systems. This makes the creation of the
multilingual systems on an embedded system possible with the
benefit that training and maintenance effort remain unchanged
compared to the provision of monolingual systems. We also
sketch how this algorithm can help together with our previous
work to have an efficient architecture for multilingual speech
recognition on embedded devices.
Index Terms: speech recognition, multilingual, codebook,
semi-continuous, non-native

1. Introduction
The trend for in-car infotainment and navigation devices goes
towards multilingual applications such as music player control.
The problem of current speech recognizer technology is that
each language has its own phoneme inventory and each of these
phonemes is modeled by a statistical model. Therefore pro-
cessing and memory demands increase with the number of lan-
guages and render multilingual speech recognition impossible
for embedded systems. This forces users to switch back to hap-
tic control for some tasks. A speech based interface that covers
20-30 of the worlds major languages would make this superflu-
ous in most cases.

In our case, the acoustic model is a semi-continuous HMM
system based on Gaussian distributions that model the features.
Unlike the more common continuous HMM, a semi-continuous
HMM system forces all HMM models to use the same set of
Gaussians which is usually referred to as codebook. This has
the advantage that a comparably small number of Gaussians has
to be evaluated for every speech frame, thus requiring low pro-
cessing and memory demand. These are important aspects for
systems running on embedded hardware. However, a codebook
is language dependent, and we showed repeatedly that the mod-
eling with suboptimal codebooks has significant impacts on the
overall recognition performance [1, 2].

One possible approach is to use the codebooks of all lan-
guages, however this is exactly causing the parameter increase
that we want to prevent as for each speech frame a 20-30 times
higher number of Gaussians has to be evaluated. A frequent ap-
proach in the literature to avoid this are multilingual phoneme
models. Such models are either based on the International Pho-
netic Alphabet (IPA, [3]) like in [4, 5], on data driven phone

comparisons like in [6, 7] or on a combination of both like in
[8, 9]. In all cases, a global phoneme model automatically leads
to only one codebook with a semi-continuous system. In [2]
we showed that using one global codebook already leads to re-
duced performance for all languages. This makes sense as there
is only a fixed amount of parameters available and it is shared
equally across all languages. However, in a car infotainment
system this is an undesirable side effect. A car infotainment
should always recognize the native language of the user with
maximum performance as this is the language for its command
and control operation.

A way to achieve the goal of maximum performance for
native languages of users is to recognize all languages with the
codebook of the native language of the current user. This solu-
tion has two negative effects:

• The codebook is suboptimal for the additional languages

• The training and maintenance effort increase with the
number of languages squared as each language has to
be trained on all codebooks

A method to tackle the first problem was presented in [1].
The presented method improves the coverage of a codebook by
adding additional Gaussians from foreign language codebooks
to generate Multilingual Weighted Codebooks (MWCs). The
results showed significant benefits for the additional languages
and no negative effects for the native language of the user. How-
ever, this amplifies the second problem, as the MWC algorithm
generates new codebooks that depend on the combination of
languages. Thus there are much more different codebooks on
which HMMs have to be trained.

This motivated our search for an algorithm that can allevi-
ate the provision of multilingual acoustic models. In [10] we
first presented projections between mixtures of Gaussians as a
solution. The basic idea is that we have monolingual acoustic
models for all languages. The problem we face is that they all
use different Gaussians from different codebooks which forces
the decoder to evaluate all Gaussians for every speech frame.
Thus, a projection that projects an HMM state that is trained on
one codebook to another codebook allows the recognition of ev-
ery language with every codebook. In [10] this projection was
based on minimizing an L2 distance between Gaussian mixture
models. However, this approach has an impractical runtime.

Ideally the algorithm should run very fast to allow the gen-
eration of the multilingual system dependent on the music col-
lection of the user as shown in Figure 1. With this process,
we can guarantee that the system covers the languages in the
music collection of the user and can scale the performance for
additional languages by adding more or less Gaussians to the
native codebook in the MWC step. An important aspect is that
all the tasks depicted in Figure 1 need to run on the embedded
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Figure 1: Generating a user adapted multilingual system on an
embedded system

system to make the tailoring for every user possible. If this re-
quirement is met, the necessary models can be generated online.
This paper evaluates alternative projections to make the last step
of Figure 1 possible on an embedded system.

2. Baseline system
The goal of the projections that are presented in this paper is to
circumvent additional training and maintenance effort for multi-
lingual speech recognition. They were not designed to increase
recognition accuracy. Therefore, the baseline in our case is ac-
tually an upper bound for what the projections can achieve. This
upper bound is a conventionally trained semi-continuous system
that we extend to cover multiple language by adding additional
HMMs for the phonemes of the additional languages.

• Add all additional language HMMs to the acoustic
model

• Train these additional HMMs with training data from the
corresponding language, not changing the codebook

An important aspect is that the codebook of the main language
is not extended, as an almost infinite number of extensions is
possible and a suitable extension can first be determined when
the target language distribution is known. However, as shown in
Figure 1 this is first known on the embedded system at runtime.
To keep the numbers comparable, the modified system will also
not modify the codebook in this paper, but our final system will
make these modifications in order to provide good performance
for all important languages (=languages that occur frequently
in a users music collection). This information can be retrieved
from the language detection component in Figure 1.

3. Proposed system
In this section we describe algorithms that can achieve a pro-
jection of a GMM distribution to another codebook. In our pre-
vious work [10] we have evaluated mathematically motivated
projections. However, these projections were too slow for our
desired online generation of multilingual HMMs. In this pa-
per, we propose four different approximated projections as an
alternative.

In all cases, the goal is to map all HMMs of all L lan-
guages to one fixed set of N Gaussians (= Recognition Code-
book, RC). When we have chosen any codebook the only way
to achieve such a mapping is by mapping all M l Gaussians of
each Monolingual Codebook (MCl) to the RC. Each Gaus-
sian N is represented by its mean µ and covariance matrix Σ.
We map based on the smallest Mahalanobis distance (Gaussian
DistanceDG). Only the covariances of the Gaussians to replace
are considered, as this ensures that the distances are not affected

by flat (=with large variance) Gaussians in the RC.

mapG(N i
MCl) = N j

RC , 0 ≤ i < M l, 0 ≤ j < N, 0 ≤ l < L

j = arg min
k

DG(µi
MCl ,µ

k
RC ,Σ

i
MCl) (1)

In the introduction we have motivated that it is advisable to
use the monolingual codebook from the main language as RC.
This case offers further possibilities how HMMs from other lan-
guages can be linked to the RC. All states from the main lan-
guage map only to Gaussians from the RC. Thus when all S
states are mapped to RS main language states only Gaussians
from the RC are used. The same is true when all HMMs are
mapped to main language HMMs. Both of these additional
mappings have the advantage that they consider the combina-
tion of Gaussians in their distance.

We map states based on the minimum Mahalanobis distance
(DS) between the expected values of their probability distribu-
tions. In our system the probability distribution ps of every state
s is a Gaussian mixture distribution with M l Gaussians.

psl(x) =

Ml∑
i=0

wiN (x; µi,Σi) (2)

The expected value of x for each state s is then

E(psl(x)) = E(

Ml∑
i=1

wi
sl
N (x; µi,Σi) )

=

Ml∑
i=1

wi
sl

µi (3)

The covariance which is needed for the Mahalanobis distance
is a global diagonal covariance ΣAll estimated on all training
samples. With DS we define our state based mapping as

mapS(si
l) = sj

RS , 0 ≤ i < Sl, 0 ≤ j < RS, 0 ≤ l < L

j = arg min
k

DS(E(si
l), E(sk

RS),ΣAll) (4)

Based on DS we can also define a distance between HMMs
(DH ). In our system each context dependent phoneme is rep-
resented through a three state HMM model. In this case the
distance between two phonemes q1 and q2 is

DH(q1,q2) =

3∑
i=1

DS(si
q1 , s

i
q2) (5)

Similar as for DS , mapH can be defined with DH . DG and
DS provide consistently good performance for different tests,
while they use rather different information for their calculation.
Therefore we also wanted to test a combined mapG+S . This
map is defined as

mapG+S(si
l) =

γG+S mapS(si
l)+(1− γG+S)


w1

si
l
mapG(N 1

MCl)

w2
si
l
mapG(N 2

MCl)

...
wMl

si
l
mapG(NMl

MCl)


0 ≤ l < L, 0 ≤ i < Sl (6)

with the combination weight γG+S . γG+S has to be determined
in experiments. In all cases, no retraining is performed after the
mapping.



4. Experimental setup
Our semi-continuous speech recognizer uses 11 MFCCs with
their first and second derivatives per frame. Monolingual rec-
ognizers for English, French, German, Spanish and Italian are
trained on 200 hours of Speecon data [11] with 1024 Gaussians
in the codebook (L = 5,M l = 1024, 0 ≤ l < L) The HMMs
are context dependent and the codebook for each language is
different. Table 1 describes the native test sets and Table 2 the

Table 1: Descriptions of the native test set for each language

Testset Language Speech Items Vocab.
GE City German 2005 2498
US City English 852 500
IT City Italian 2000 2000
FR City French 3308 2000
SP City Spanish 5143 3672

Table 2: Description of the non-native test sets

Testset Accent Speech Items Vocab.
Hiwire FR French 5192 140
Hiwire SP Spanish 1759 140
Hiwire IT Italian 3482 140
Hiwire GR Greek 3526 140

non-native test sets. The native tests are city names from an in-
house database. The Word Accuracy (WA) differences that the
results show between the languages are due to different noise
conditions in the different tests.

The non-native test sets contain command and control utter-
ances in accented English from the Hiwire database [12]. The
Hiwire database was identified as the most appropriate exist-
ing and available database after a review of existing non-native
databases [13]. To indicate that the language information in
the test name only specifies the accent, the language informa-
tion is given after the test name (in contrast to before for the
different native tests). Our baseline results are in average 6%
absolute WA lower than in [12], but these results were achieved
with 17k Gaussians, and we have only 1024 Gaussians. The
Speecon database is also noisier than the Hiwire database, but
we preferred to use Speecon, as it includes similar training ma-
terial for more than 20 languages.

5. Experiments
5.1. Runtime

A key aspect of the projections is their runtime as they finally
have to run on an embedded system. Table 3 gives the times
for the projection of an English HMM set with 1800 phoneme
models to a German codebook on a Intel PC with 3.6 GHz. In
order to reduce the load on the embedded device the calculation
of the mappings is separated from the actual projection (=mod-
ification of the HMMs). The runtime for the precomputation
of the mapping is shown in the second column. The third col-
umn shows the actual runtime of the estimation of the output
probabilities of the HMM models. Only this processing time is
actually needed on the embedded system. Of course, embedded
systems are slower, which will increase the time. However, al-
ready current car infotainment systems have the capabilities to

Table 3: Runtime aspects of the different projections

Projection Precomputations Runtime
mapG 2s 0.2s
mapS 12s 0.1s
mapH 4s 0.1s

mapG+S 14s 0.3s
L2 330s 30s

Retrained - 14,400s

execute these calculations in a couple of seconds. To make a
comparison to our previous work possible, we also mention the
runtime aspects of an projection algorithm that is minimizing
an L2 distance [10]. The upper bound of a conventional retrain-
ing of HMMs is presented in the last row of the table. Apart
from the fact that the in-car system has no access to the nec-
essary speech databases, the runtime difference already forbids
to execute conventional HMM trainings on embedded systems.
Only with the projections an online generation of the multilin-
gual models becomes feasible.

5.2. Combination weight

This experiment is focused on the evaluation of the influence of
the combination weight γG+S for the last mapping. Figure 2
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Figure 2: Influence of the combination weight in projection 7
on the performance on different test sets

demonstrates that the exact value of the combination weight is
not important, all values between 0.3 and 0.7 lead to consistent
improvements for the three depicted test sets. Only graphs for
three test sets are visualized to keep the graph readable. The
following experiments will always use a γG+S value of 0.5.

5.3. Projections on native speech

This section evaluates native language tests for five languages
with German as the main language (=the German codebook is
applied). Figure 3 presents the Word Accuracies (WA) on the
native German, English, French, Spanish and Italian test. For
the main language German nothing is changed by the mappings.
For the other languages the HMMs have to be mapped from
their native codebooks to the German codebook. As we ex-
plained before, the conventional retraining is the upper bound
that projections can achieve. The graphs illustrates the perfor-
mance of the different projections for the different test sets. One
aspect is that the relative performance between the projections
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Figure 3: Performance of online generated HMMs on native
speech of different languages

is independent of the language. In all languages, the HMM
based mapping performs worse and mapG+S and the L2 based
projection perform best. There is no clear trend whether the
L2 based projection is better or worse than mapG+S. Fur-
thermore, the results show that the best projection can always
achieve a performance in vicinity of the performance of the
baseline. The gap in word accuracy is tolerable as our approach
provides a multilingual acoustic model with optimal language
distribution without the need for trainings of n2 models. Op-
posed to this, the projections hardly require any additional ef-
fort for the provision of additional languages. Together with our
previous work about MWCs the projection algorithm can there-
fore build the desired target architecture depicted in Figure 1
that allows to tailor the speech recognition system to the current
needs of the user.

5.4. Projections on non-native speech
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Figure 4: Performance of online generated HMMs on non-
native accents of English

To complete the evaluations of the projections, the perfor-
mance on accented English is depicted in Figure 4. The curves
show the same tendencies as in the native case, again the HMM
map is worst and the combined state and Gaussian mapping
is best. The only difference is that the combined Gaussian
and State mapping outperforms the L2 based projection. This
strongly argues for the application of mapG+S in our final sys-
tem as it is both faster and better than the L2 based projection.
Furthermore, the results of mapG+S are again within the reach
of the results of a conventional retraining.

6. Conclusion
At the beginning of the paper we have presented our approach
how to make multilingual speech recognition on embedded de-
vices feasible for many languages. Compared to existing ap-
proaches our new approach has the advantage that it can ex-
plicitly tailor a system for the current needs of a user. A major
problem with this architecture is the additional effort at train-
ing and decoding. In this paper we have dealt with the aspect
of increased training and maintenance effort for the provision
of multilingual systems by projecting HMMs trained on one set
of Gaussians to a new set of Gaussians. We proposed four new
techniques for this task and evaluated their performance. The
results showed that a projection that is based on information
on the Gaussian and the state level achieves performance in the
vicinity of traditional HMM trainings. However, our new ap-
proach can generate multilingual HMMs within fractions of a
second from monolingual HMMs. Only due to this the whole
architecture that we propose becomes realizable. That is also
the reason why we refer to it as an online generation of multi-
lingual acoustic models. Future work will include an evaluation
of our full system with a combination of the MWC and the pro-
jection algorithm presented in this paper. We expect that the
final system has both good performance and that it requires al-
most no additional training and maintenance efforts.
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