
Linux Scheduling

Scheduling Policy and Algorithms, the schedule() Function
of the Linux Kernel version 2.4.20

Patrick Stahlberg
<Patrick.Stahlberg@hadiko.de>

$Id: speech.mgp,v 1.7 2002/12/17 10:59:17 patrick Exp $

 Structure of this talk

 What is scheduling, why do we need it?
 concepts related to scheduling

 How is scheduling done in Linux?
 policy
 algorithms

Part One

What is scheduling?

 What is scheduling?

 Distribution of the resource ’processor’ to the competing
tasks

 In this talk: only uniprocessor-scheduling

 Lifecycle of a process

Blocked Processes

Ready Queue Active Process

Terminated
Process

New Processes

 Classification of processes

 Interactive processes
 Batch processes
 Real-time processes

 I/O-bound
 CPU-bound

 These classifications are independent

 Process Preemption

 Ability of an OS to take away CPU control of a process before it does
this voluntarily.

 Processes are assigned processing time quanta, a process will be
preempted when its quantum duration is passed.

 Scenario: a high-priority task enters the TASK_RUNNING state while a
low-priority task is active --> the low-priority task is preempted

 Linux features preemptive processes but not (yet) a preemptive kernel

 Measures of good Scheduling (1)

 Fairness, equal treatment of processes

 Prevent "Starvation" of processes

 Use processing power efficiently

 Minimize overhead caused by scheduling itself

 Measures of good Scheduling (2)

 For a Multiuser-Multitasking-OS:

 Interactive processes should have quick response times

 Desirable: intelligent treatment of I/O- and CPU-bound processes

Part Two

Linux scheduling policy and algorithms

 When is the scheduler called?

 Direct invocation
 During System Calls
 Mostly indirectly via sleep_on()
 e.g. when waiting for a resource

 Lazy invocation
 After System Calls or interrupts
 if need_resched is set
 e.g. after sched_set_scheduler()
 The timer interupt also sets need_resched, making sure that schedule()

is called frequently

 Data structures used by the scheduler

 need_resched
 A flag set by interrupt handling routines
 When set, ret_from_intr() calls schedule()

 policy
 Scheduling policy, see following slide

 rt_priority
 Static priority field for real-time processses

 priority
 Base time quantum (SCHED_RR)
 Base priority (SCHED_OTHER)

 counter
 CPU time left for process in current epoch

 Scheduling classes

 Linux provides three different scheduling algorithms called
‘scheduling classes’

 Each process can be assigned one scheduling class

 Scheduling classes are: SCHED_FIFO, SCHED_RR,
SCHED_OTHER

 The SCHED_FIFO scheduling class

 Real-time processes

 Unlimited CPU time for processes given that there is no
higher-priority process

 Static priority

p2

t2t1 t

p1

p3

 The SCHED_RR scheduling class

 Real-time processes

 Enhancement of SCHED_FIFO that introduces time slicing

 Static priority

p2

tt1 t2 t3 t4 t5

p1

p3

t6

 The SCHED_OTHER scheduling class

 All other processes

 Dynamic priority

 Time slicing

 Time slicing is using epochs

 Epochs

 Each non-realtime process is assigned a time quantum at
the beginning of an epoch.

 The epoch ends when all processes in the runqueue have
used up their time quantum.

 The schedule() function

 Very much simplified:

 If previous process is a SCHED_RR process which has
exhausted its time slice: assigns a new time slice to it and
puts it at the end of runqueue.

 Main scheduling loop:
 Loops through items of runqueue
 Calculates a ‘goodness’ value for each one of them
 Remembers the first task with highest goodness value

 Does a context switch to the chosen task.

 Goodness of a process

 Calculated by the goodness() function

 Goodness of real-time tasks is always higher than
goodness of a SCHED_OTHER task (1000 + rt_priority)

 Goodness is calculated like this for SCHED_OTHER tasks:

 if (p->mm == prev->mm)
 return p->counter + 1 + 20 - p->nice;
 else
 return p->counter + 20 - p->nice;

 Literature:

 kernel/sched.c
 http://en.tldp.org/LDP/tlk/kernel/processes.html#tth_sEc4.3
 sched_setscheduler(2)
 http://www.kernelnewbies.org/documents/schedule/
 http://www.ora.com/catalog/linuxkernel/chapter/ch10.html

 End. Questions?

 You can download these slides at http://www.stud.uni-karlsruhe.de/~uzgx/prosem/

