SASE: Complex Event Processing over Streams*

Daniel Gyllstrom"
Yanlei Diao*

Department of Computer Science
University of Massachusetts Amherst
{dgylistr, chae, yanlei, patrick, gordon}@cs.umass.edu

ABSTRACT

RFID technology is gaining adoption on an incregsinale for
tracking and monitoring purposes. Wide deploymaft®FID
devices will soon generate an unprecedented voloimgata.
Emerging applications require the RFID data to itteréd and
correlated for complex pattern detection and tramséd to
events that provide meaningful, actionable infoioratto end
applications. In this work, we design and devel#&$E, a com-
plex event processing system that performs sucha-dat
information transformation over real-time strea& design a
complex event language for specifying applicatiogid for such
transformation, devise new query processing teclasigo effi-
ciently implement the language, and develop a cehensive
system that collects, cleans, and processes RR#Dfdadeliv-
ery of relevant, timely information as well as §tgrnecessary
data for future querying. We demonstrate an injiia@totype of
SASE through a real-world retail management scenari

1. INTRODUCTION

Recent advances in RFID technology have facilitat®ddop-
tion in a growing number of applications includisgpply chain
management [5], surveillance [5], and healthcatetfbname a
few. The driving force behind RFID adoption is ueqedented
visibility into systems that have to this point haeobservable.
With this visibility, it will be possible to monite correct, con-
trol, and improve processes of vital economic, e@dtj and
environmental importance. For example, real-tinghbility into
supply chain inventory can help detect and prewveitrof-stocks
and shrinkage before it occurs. Similarly, realgimonitoring
of patients taking medications can help enforceicaédompli-
ance and alert care providers when anomalies occur.

The successful development of an RFID data manageme
system for providing such real-time visibility musddress two
unique challenges presented by RFID technology:

« Logic complexity: Data streams emanating from RFID sens-
ing devices carry primitive information about thagtat-
tached to an object; its location and the time @rfising.
RFID-based monitoring applications, however, reguir
meaningful, actionable informatione., out-of-stocks,
shoplifting) that is defined by unique complex logavolv-
ing filtering, pattern matching, aggregation, resive pattern
matching,etc  To resolve the mismatch between data and

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oremistribute to lists,
requires prior specific permission and/or a fee.
Conference’'04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

Eugene Wu*
Patrick Stahlberg®

Hee-Jin Chae®
Gordon Anderson®

“Computer Science Division
University of California, Berkeley
sirrice@berkeley.edu

information, it is critical to have a processingmgmnent

that resides on RFID streams and performs datanvetion

transformation.

¢ Performance requirements. Large deployments of RFID
devices could create unprecedented volumes of Watade-
spite the volume of data and logic complexity, RFiBta
processing needs to be fast. Filtering, patterrciniadg, and
aggregation must all be performed with low-latency.

We design and develop a complex event processistgray
SASE, that transforms real-time RFID data into niegful,
actionable information. We first provide an expiess user-
friendly event language that allows applicationeitzode their
complex logic for such data-information transforimat This
language significantly extends existing languageshsas com-
plex event languages [2][10] developed for actimtablases and
stream languages [1][3][7] with support for sequempatterns
that involve temporal order of events, negationluedased
predicates, sliding windowstc

We then provide a query plan-based approach toieffly
implementing the proposed event language. This campr is
based on a new abstraction of complex event primggshat is
a dataflow paradigm with native sequence operabitbe bot-
tom, pipelining query-defined sequences to subsequela-
tional style operators. This new abstraction alows us to
explore alternative query plans to optimize foriemas issues in
high-volume complex event processing.

We further develop a comprehensive system thaecsl|
and cleans data from RFID devices, creates evantsruns the
event stream through the complex event processatetiver
timely results to the user and archive events datbase. Our
system allows the user to query the resulting edatdbase by
either sending ad-hoc queries or writing continuqusries that
combine stream processing and database access.

A prototype of the SASE system will be demonstrated
through a simulated retail-store RFID deploym@&mpecifically,
we demonstrate (1) the expressiveness of the |gegoy show-
ing its uses in specified monitoring queries ad agldata trans-
formation rules for archiving, (2) a complete déiav from
RFID devices through various SASE components tal fijuery
output, and (3) track-and-trace queries over antedatabase.

The remainder of this paper is organized as folldextion
2 describes our complex event language and itscimghtation.
Section 3 presents the SASE system architecturioBet dis-
cusses our demonstration scenario.

2. COMPLEX EVENT PROCESSING

In this section, we survey the SASE event langutigeugh
examples, and discuss its implementation.

* This proposal accompanies a full paper submisgo@IDR [4].



2.1.1 Complex Event Language

The SASE language has a high-level structure similaSQL
for ease of use by database programmers, but gigndef the
language is centered on event pattern matchinigjuasated in
this section. The overall structure of the SASHlage is:

[FROM <stream name>]
EVENT <event pattern>
[WHERE <gualification>]
[wWITHIN <window>]

[PARTITION BY <partition by attributes>]

[HAVING <having clause>]

[RETURN <return event pattern>]

The semantics of the language are briefly descraseébl-

lows: TheFroM clause provides the name of an input stream. If

it is omitted, the query refers to a default systeput. The
EVENT, WHERE and WITHIN clauses form the event matching

block. The evenT clause specifies an event pattern to be

matched against the input stream. ThERE clause, if present,
imposes value-based constraints on the events ssitdy the
pattern. ThewitHIN clause further specifies a sliding window
over the event pattern. The event matching bloaksfiorms a
stream of input events to a stream of m@mposite eveat

The PARTITION BY clause, if present, partitions the post-
matching stream into multiple substreams, simitlaGroupP BY
in SQL andrPARTITIONED BY in the CQL language [1]. Like SQL,

the optionalHAVING clause can be used to filter those sub-

streams that do not satisfy certain constraints.

Finally, the RETURN clause transforms the post-matching
stream or its substreams for final output. It celec a subset of
attributes and compute aggregate values likesthecT clause
of SQL. It can also name the output stream andtype of
events in the output. It can further invoke databaperations
for retrieval and update.

We explain these language constructs using exardpdes
from an RFID-based retail store scenario (whiclised in our
demonstration and is further described in Sectipn # this
scenario, an RFID tag is attached to every produd retail
store. RFID readers are installed above the sheblsckout
counters, and exits. These readers generate ageiddi product
is in its read range. In our examples, we assinaiereadings at
the shelves, checkout counters, and exits are gepied as
events of three distinct types.

Our first example query (Q1) detects shopliftingivaty; it
reports items that were picked at a shelf and tagan out of
the store without being checked out. HweNT clause contains
a SEQ construct that specifies ssquence in a particular order;
the sequence consists of the occurrence 8HALF_READING
event followed by the non-occurrence o€QUNTER_READING
event followed by the occurrence of aXIT_READINGevent.
Non-occurrences of events, referred to regation, are ex-
pressed using ‘''. For the use of subsequent clude SEQ
construct also includes a variable in each sequeangonent
to refer to the corresponding event. Thieere clause of Q1
uses these variables to form predicates that cargitiibutes of
different events, referred to gmrameterized predicates. The
parameterized predicates in Q1 compareTihgld attributes of
all three events in theeqQ construct for equality. Q1 contains a
WITHIN clause to specify aliding window over the past 12
hours. Finally, theReTurN clause retrieves the tag id and prod-
uct name of the item, the area id of the exit, mnithtes a data-
base lookup to retrieve a textual description efekit €.g, the
leftmost door on the south side of the store). Nbé& our lan-
guage provides a set of built-in functions (staméth ' ) for

common database operations and can be extendeddmmano-
date other user functions.

QL EVENT SEQSHELF READINGX, ! (COUNTER READINGY),
EXIT_READING2)
WHERE Xx.Tagld=y.Tagd Ox.Tagld=zTagld
WITHIN 12 hours
RETURN X.Tagld x.ProductNamez.Areald,
_retrieveLocation&reald)

The second example (Q2) illustrates how the SASE la
guage can be used to express data transformaties far ar-
chiving. Here, we use an event sequence queryetect a
change in location of an item and trigger a datahgsdate to
reflect the change. ThevenT, wHERE, andwWITHIN clauses are
used to detect the location change. RE&URN clause calls a
system function _updateLocation to perform a l@satipdate in
the database. Internally, the event database dtoedecation of
an item usingTi mel n and Ti neCQut attributes, representing
the duration of its stay. The _updateLocation fiomcfirst sets
the Ti meQut attribute of the current location using the
y.Timestampralue, and then creates a tuple for the new locati
with theTi nel n attribute also set to the valueyoTimestamp

Q2 EVENT SEQSHELF_READING, SHELF_READING/)
WHERE X.id =y.id Ox.area_id !=y.area_id
WITHIN 1 hour
RETURN _updateLocatiory.Tagld, y.Areald, y.Timestaimp

Several other queries that our language supporitsbei
shown through our demonstration, as described dtic3e4.

2.1.2 Implementation

SASE is implemented using a query plan-based apprahat
is, a dataflow paradigm with pipelined operatorsnaselational
query processing. As such, it provides flexibilityquery execu-
tion and extensibility as the event language ewlvihis ap-
proach, however, employs a new abstraction for tegerry
processing. Specifically, we devise native sequerperators
based on aNon-deterministic Finite Automat@ased model
which can read query-specific event sequencesiegftig from
continuously arriving events. These operators hen tused to
form the foundation of each plan, pipelining themvsequences
to subsequent operators such as selection, windegation,
etc This arrangement allows the subsequent operatorse
implemented by leveraging relational techniques.

The new abstraction of event query processing alleavs
us to optimize for two salient issues in complerrdvprocess-
ing: large sliding windowsand intermediate result setd arge
sliding windows spanning hours or days are commasid in
monitoring applications. Sequence generation frowents
widely dispersed in such windows can be an expenspera-
tion. To address this issue, we develop optiminatithat em-
ploy novel sequence indexes to expedite the sequeperators.
Large intermediate result sets also strongly affetry process-
ing. To reduce intermediate results, we stratelyigaish some
of the predicates and windows down to the sequepeeators;
the optimizations are based on indexing relevashtsvboth in
temporal order and across value-based partitions.ifiterested
reader is referred to [9] for details of these teéghes.

3. ARCHITECTURE

The architecture of the SASE system is shown iruféidl. It
consists of three layers. The bottom layer contghgsical
RFID devices €.g tags, readers). The RFID data returned from
RFID readers is passed to the next layer for detaning and
event generation. The event stream is then fetlddhird layer



Continuous f Ad hoc
queries b.c 2 queries
Results | Results l
Eompidl Even <
strean Event
Event Processor Database

:

1
Querying over streams ' Querying over history
)

| Cleaning and Association I

RAD B W N B By Reade

. B L | 8]
e B RS B B Bl
Devices E i =l = gl 5l =

B = Tag:s
Figure 1: SASE System Architecture

where most of the data processing takes place.r& compo-

nent of the layer is a complex event processorghatesses the
event stream to deliver timely results to the umed archive

events into a database. Our system allows thetasguery the

resulting event database by either sending ad-hmries or

writing continuous queries that combine stream @ssing and
database access. These components are describeddrdetail

below.

Physical Device Layer. The physical device layer consists
of RFID readers, antennas, and tags. RFID reastens their
reading range in regular intervals and return airepfor each
detected tag in output. Each raw RFID reading istsi®f the
tag id and reader id. For our demonstration, veeauslercury 4
Agile RFID Reader fronThingmagicand multiple antennas to
simulate multiple readers. Individual objects tagged with
EPC Classl Generation 2 tags from Alien Technology.

Cleaning and Association Layer. The Cleaning and Asso-
ciation Layer serves two important functions. Fiistopes with
idiosyncrasies of readers and performs data clgarsnch as
filtering and smoothing. This is important as RREadings are
known to be inaccurate and lossy. Our data cleacmgponent
is based on some of the techniques described irSgjond, it
uses attributes such as product name, expiratite) ead sale-
able state to create events. This helps facilipabeessing and
decision making in subsequent components. Intgsndhe
Cleaning and Association layer consists of five porents:

(1) Anomaly Filtering Layer: removes spurious readitagsl
readings that contain truncated ids.

(2) Temporal Smoothing Layer: the system decides wihethe
object was present at timidased not only on the reading at
time t, but also on the readings of this object in a wind
size ofw beforet. Using this heuristic, a new reading may
be created.

(3) Time Conversion Layer: a timestamp is appendedath e
reading based on a logical time unit that is set agstem
configuration parameter.

(4) Deduplication Layer: removes duplicates, which dan
caused either by a redundant setup, where two reade
monitor the same logical area, or when an iterdessin
the overlapping area of the read ranges of twoemnsad

(5) Event Generation Layer: generates events accorting
pre-defined schema. An important step in evenegiion
is to obtain attributes defined in the schema. inaatual
real-world system, attributes., product name, expiration

date) can be retrieved from a tag’'s user-memory lman

from an Object Name Service (ONS) [6]. In our egst

we simulate an ONS with a local database storirglysct
metadata associated with each item.

Complex Event Processor. The complex event processor
supports continuous long-running queries writterthe SASE
language over event streams. Specifically, it perfo three
tasks.

¢ For each monitoring task such as detection of sttiog,
the user writes a query and registers it asoatinuous
querywith the complex event processor. The event proces
sor starts executing the query over the RFID streght
away and returns a result.g, a notification) to the user
every time the query is satisfied. Such processomginues
until the query is deleted by the user.

« Transformation rules for data archiving are alsgistered
as continuous queries with the event processorséljae-
ries can be used to remove duplicate data andforams
data to the format required for archival. The résgl
events are streamed to the event database fogstora

« The event processor can further handle complexroomis
queries that integrate stream processing and dsaba
lookup: upon detection of an event of interests¢éhgueries
require database access to retrieve additionatnvton,
as shown in Q1 in Section 2.1.1. The event procesgo
ports these queries by first detecting the evéet) sending
a subquery to the database, combining informatien r
trieved from the database with that obtained frdmwe t
stream, and finally returning a complete resuth® user.

Event Database. SASE contains a persistence storage com-
ponent to support querying over historical data &mdallow
query results from the stream processor to be jowith stored
data. As mentioned in the previous section, RFiBash data is
transformed using rules declared with the compiengeproces-
sor before archiving. Our system supports two irfgrtrrules:
Location Update and Containment Update. For locatipdate,
a tag’s location information is updated when weenbs this tag
in a different location with a different timestanfpor contain-
ment updates, readings from unloading and loadomeg are
aggregated into a containment relationship.

User Interface (Ul). SASE has a Ul that allows the user to
issue both continuous queries over the RFID straadhad hoc
queries on the event database. It provides a vigsentation
for the query results as well as the internal dita through
various SASE system components. The Ul providgarsee
windows for monitoring the events output by theaPieg and
Association Layer, presenting results produced Hey gtream
processor, and displaying results from event datahaeries.

4. DEMONSTRATION SCENARIO
In this demonstration, we show (1) the expressisena the
SASE language through its uses for monitoring gseaind data
transformation rules for archiving, (2) a compldsa flow from
RFID devices through various SASE components tal fijuery
output, and (3) track-and-trace queries over tlemedatabase.

Our demonstration is based on a simulation of &&ype-
tail management scenario. Our retail store setuysists of five
readers (antennas), with one reader in each ofial@wing
locations: the storage room entrance (unloadingelostore
exit, two shelves, and the door between the staeg® and the
selling area. One reader occupies only one logiczd.

Using this setup, we first have a live demonstratichere
actions (e.g. shoplifting, out-of-stock, or mismédcinventory)



< RFID Retail Store Demeo

|
)

&

Preset Oueries

Select a Preset Query or enter a query helow:

EVENT SEQISHELF_READIMNG ¥, | (COUNTER_READING ), EXIT_READING z)
HERE xTagld=yTagld AND x.Tagld =z Tagld
ITHIN 12 hours

RETURM xTagld, xProdMame, zAreald, _retrievel ocationz Areald)

&
Events:

3DEASASOODNN000610162087735/8[TEST TAG|Genera|Shell_Reading|61147533726 |+
D3945A500000000610162072228|2|REDIMycarp|Shelf_Reading|3(1147533726
B5TASASO000000061 01620877 96/6[YELLOW|GEnetech|Shelf_Reading|3]1147533726
BTAZABAS0000000051 01 6208781 46[YELLOWI|Genetech|Shell_Reading|3|1147533726
E21ASAS0000000061 0162072231 |5|ORANGEMycorp|Shell_Reading|B|1147533726
46645A50000000061 01620877 86|6[YELLOVW|Ganetech|Shelf_Reading|3]1147533726

EAANN]

7 I | ]

ALERT:
- Theft Alert @ WWed May 15 01:45:33 EST 2006
* Avred polo shintwith Tagld=0x5C94A5A50000000081 0182072225 may hawe heen
stolen at retail store exit 1,

Monitor Events Run Database Query

Run Stream Querny

&

=
Query Results:

Qe SELECT Arsahbarme =

FROM  Area

WHERE AreaERC=1 =
Result

Retail ext =
&5

Results and Alerts:
[0¥5CE4A5A50000000061 0162072225, red polo shir, 1]

Reset Run Preset Query

Figure 2: A screenshot of the SASE event processor

are simulated live in our retail-store setup. Qmnbius queries
monitor and detect these actions. Then we execatk-and-
trace queries over an event database that is tadlét advance.
We execute the following SASE queries in the demo:
e Out-of-stock query: monitoring for an event where t
number of product items on a shelf falls belowrashold.
» Misplaced inventory query: monitoring for an everitere
a shelf item is misplaced.
« Shoplifting query: monitoring for an event where itam
exits the system without passing the check-out myun
« Archiving queries: specifying data transformatiates for

archiving,e.g, detecting an event representing a change in

location of an object and performing a databasetgd

For each of these queries, the individual quefirss added
to the complex event processor. Then the actuzh\ber (e.g.
shoplifting, out-of-stock, or misplaced inventorg) simulated
live in our “retail store.” This results in the tdame detection
of the behavior and a notification from the SASE WHor ex-
ample, consider the shoplifting query describe8eation 2.1.1.
SASE generates an alert similar to the one in [igkr The
“Message Results” window (bottom left corner) poes the
fully processed output from the shoplifting quepesified in
the “Present Queries” window (top left corner). Tdweput re-
flects the result from the database query executedthe
_retrieveLocation() function specified in tHRETURN clause
joined with x.Tagld x.ProdName and z.Areald values com-
puted by the stream query. On the top right sidtheffigure is
the “Cleaning and Association Layer Output” windawmoni-
tor the event stream output of the Filtering andsdsation
Layer. Below this is the “Database Report” windavhich dis-
plays the database query actually executed by hiopliting
query and its result. Meanwhile, thel'agld x.ProdNameand

z.Arealdvalues computed by the SASE stream query are shown

in the “Stream Processor Output” window (below ‘thatabase
Report” window). The Ul uses these intermediateultesto
provide a useful message to the user.

During the live demonstration we use the three ww&lon
the right in Figure 2 to display the intermediagsults used to
compute final query output and to demonstrate SASfternal
data flow.

The second part of the demonstration is to runktea-
trace queries over the event database. We use B&#® col-
lected in advance that simulates typical warehcarse retail
store workloads, such as loading/unloading itemecking
shelves, and changing containmergsg( moving items from
one box to another). These traces are collectedeaphysical
device level and fed to the complex event proceskiger for
archival. We populate our event database with RitD data,
and then run the following track-and trace queries:

e Movement history: find the location and containment

changes of an item.
» Missing item search: find out where a missing itgas lost
(when the id of the missing item is known).
« Missing item detection: check for possible missitem
knowing the time when all objects were present.
Our demonstration also illustrates the use of taud-trace
queries executed as a part of continuous queries.

5. REFERENCES

[1] Arasu, A, Babu, S., and Widom, J. CQL: A langufiecontinu-
ous queries over streams and relation®BL, 1-19, 2003.

[2] Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kind, S.

Composite events for active databases: Semantingexts and

detection. InVLDB, 606-617, 1994.

Chandrasekaran, S., Cooper, O., Deshpande, AKklirai!.J.,

Hellerstein, J.M., Hong, W., et al. TelegraphCQn@uuous data-

flow processing for an uncertain world.CIDR, 2003.

Diao, Y., Sarma, S., and Krithnamurthy, V. TowaatsRFID-

based information infrastructure. Under submission.

Garfinkel, S. and Rosenberg, B. RFID: Applicatiosecurity, and

privacy. Addison-Wesley, 2006.

MIT Auto-ID Lab. EPC network architecture. Januafpé.

http://autoid.mit.edu/CS/files/3/networkarchite&ur

Rizvi, S., Jeffery, S.R., Krishnamurthy, S., FrankM.J., et al.

Events on the edge. BIGMOD 885-887, 2005.

Jeffery, S.R., Alonso, G., Franklin, M.J., Hong,,\&hd Widom, J.

A pipelined framework for online cleaning of sendata streams.

In ICDE, 140, 2006.

[91 Wu E., Diao Y., Rizvi S. High-performance ComplexeBt Proc-
essing over Streams. 8IGMOD, 407-418, 2006.

[10] Zimmer, D. and Unland, R. On the semantics of cemplents in
active database management systemiCIDE, 392-399, 1999

(3]

[4]
[5]
[6]
[7]
(8]



