
SASE: Complex Event Processing over Streams*
Daniel Gyllstrom1 Eugene Wu2 Hee-Jin Chae1
Yanlei Diao1 Patrick Stahlberg1 Gordon Anderson1

1Department of Computer Science
University of Massachusetts Amherst

{dgyllstr, chae, yanlei, patrick, gordon}@cs.umass.edu

2Computer Science Division
University of California, Berkeley

sirrice@berkeley.edu

ABSTRACT
RFID technology is gaining adoption on an increasing scale for
tracking and monitoring purposes. Wide deployments of RFID
devices will soon generate an unprecedented volume of data.
Emerging applications require the RFID data to be filtered and
correlated for complex pattern detection and transformed to
events that provide meaningful, actionable information to end
applications. In this work, we design and develop SASE, a com-
plex event processing system that performs such data-
information transformation over real-time streams. We design a
complex event language for specifying application logic for such
transformation, devise new query processing techniques to effi-
ciently implement the language, and develop a comprehensive
system that collects, cleans, and processes RFID data for deliv-
ery of relevant, timely information as well as storing necessary
data for future querying. We demonstrate an initial prototype of
SASE through a real-world retail management scenario.

1. INTRODUCTION
Recent advances in RFID technology have facilitated its adop-
tion in a growing number of applications including supply chain
management [5], surveillance [5], and healthcare [5], to name a
few. The driving force behind RFID adoption is unprecedented
visibility into systems that have to this point been unobservable.
With this visibility, it will be possible to monitor, correct, con-
trol, and improve processes of vital economic, societal, and
environmental importance. For example, real-time visibility into
supply chain inventory can help detect and prevent out-of-stocks
and shrinkage before it occurs. Similarly, real-time monitoring
of patients taking medications can help enforce medical compli-
ance and alert care providers when anomalies occur.

The successful development of an RFID data management
system for providing such real-time visibility must address two
unique challenges presented by RFID technology:

• Logic complexity: Data streams emanating from RFID sens-
ing devices carry primitive information about the tag at-
tached to an object; its location and the time of sensing.
RFID-based monitoring applications, however, require
meaningful, actionable information (e.g., out-of-stocks,
shoplifting) that is defined by unique complex logic involv-
ing filtering, pattern matching, aggregation, recursive pattern
matching, etc. To resolve the mismatch between data and

information, it is critical to have a processing component
that resides on RFID streams and performs data-information
transformation.

• Performance requirements: Large deployments of RFID
devices could create unprecedented volumes of data. Yet de-
spite the volume of data and logic complexity, RFID data
processing needs to be fast. Filtering, pattern matching, and
aggregation must all be performed with low-latency.
We design and develop a complex event processing system,

SASE, that transforms real-time RFID data into meaningful,
actionable information. We first provide an expressive, user-
friendly event language that allows applications to encode their
complex logic for such data-information transformation. This
language significantly extends existing languages such as com-
plex event languages [2][10] developed for active databases and
stream languages [1][3][7] with support for sequence patterns
that involve temporal order of events, negation, value-based
predicates, sliding windows, etc.

We then provide a query plan-based approach to efficiently
implementing the proposed event language. This approach is
based on a new abstraction of complex event processing; that is
a dataflow paradigm with native sequence operators at the bot-
tom, pipelining query-defined sequences to subsequent rela-
tional style operators. This new abstraction also allows us to
explore alternative query plans to optimize for various issues in
high-volume complex event processing.

We further develop a comprehensive system that collects
and cleans data from RFID devices, creates events, and runs the
event stream through the complex event processor to deliver
timely results to the user and archive events in a database. Our
system allows the user to query the resulting event database by
either sending ad-hoc queries or writing continuous queries that
combine stream processing and database access.

A prototype of the SASE system will be demonstrated
through a simulated retail-store RFID deployment. Specifically,
we demonstrate (1) the expressiveness of the language by show-
ing its uses in specified monitoring queries as well as data trans-
formation rules for archiving, (2) a complete data flow from
RFID devices through various SASE components to final query
output, and (3) track-and-trace queries over an event database.

The remainder of this paper is organized as follows. Section
2 describes our complex event language and its implementation.
Section 3 presents the SASE system architecture. Section 4 dis-
cusses our demonstration scenario.

2. COMPLEX EVENT PROCESSING
In this section, we survey the SASE event language through
examples, and discuss its implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

* This proposal accompanies a full paper submission to CIDR [4].

2.1.1 Complex Event Language
The SASE language has a high-level structure similar to SQL
for ease of use by database programmers, but the design of the
language is centered on event pattern matching, as illustrated in
this section. The overall structure of the SASE language is:

[FROM <stream name>]
EVENT <event pattern>
[WHERE <qualification>]
[WITHIN <window>]
[PARTITION BY <partition by attributes>]
[HAVING <having clause>]
[RETURN <return event pattern>]
The semantics of the language are briefly described as fol-

lows: The FROM clause provides the name of an input stream. If
it is omitted, the query refers to a default system input. The
EVENT, WHERE and WITHIN clauses form the event matching
block. The EVENT clause specifies an event pattern to be
matched against the input stream. The WHERE clause, if present,
imposes value-based constraints on the events addressed by the
pattern. The WITHIN clause further specifies a sliding window
over the event pattern. The event matching block transforms a
stream of input events to a stream of new composite events.

The PARTITION BY clause, if present, partitions the post-
matching stream into multiple substreams, similar to GROUP BY

in SQL and PARTITIONED BY in the CQL language [1]. Like SQL,
the optional HAVING clause can be used to filter those sub-
streams that do not satisfy certain constraints.

Finally, the RETURN clause transforms the post-matching
stream or its substreams for final output. It can select a subset of
attributes and compute aggregate values like the SELECT clause
of SQL. It can also name the output stream and the type of
events in the output. It can further invoke database operations
for retrieval and update.

We explain these language constructs using examples drawn
from an RFID-based retail store scenario (which is used in our
demonstration and is further described in Section 4). In this
scenario, an RFID tag is attached to every product in a retail
store. RFID readers are installed above the shelves, checkout
counters, and exits. These readers generate a reading if a product
is in its read range. In our examples, we assume that readings at
the shelves, checkout counters, and exits are represented as
events of three distinct types.

Our first example query (Q1) detects shoplifting activity; it
reports items that were picked at a shelf and then taken out of
the store without being checked out. The EVENT clause contains
a SEQ construct that specifies a sequence in a particular order;
the sequence consists of the occurrence of a SHELF_READING
event followed by the non-occurrence of a COUNTER_READING
event followed by the occurrence of an EXIT_READING event.
Non-occurrences of events, referred to as negation, are ex-
pressed using ‘!’. For the use of subsequent clauses, the SEQ
construct also includes a variable in each sequence component
to refer to the corresponding event. The WHERE clause of Q1
uses these variables to form predicates that compare attributes of
different events, referred to as parameterized predicates. The
parameterized predicates in Q1 compare the TagId attributes of
all three events in the SEQ construct for equality. Q1 contains a
WITHIN clause to specify a sliding window over the past 12
hours. Finally, the RETURN clause retrieves the tag id and prod-
uct name of the item, the area id of the exit, and initiates a data-
base lookup to retrieve a textual description of the exit (e.g., the
leftmost door on the south side of the store). Note that our lan-
guage provides a set of built-in functions (started with ‘_’) for

common database operations and can be extended to accommo-
date other user functions.

Q1: EVENT SEQ(SHELF_READING x, ! (COUNTER_READING y),
EXIT_READING z)

WHERE x.TagId = y.TagId ∧ x.TagId = z.TagId
WITHIN 12 hours
RETURN x.TagId, x.ProductName, z.AreaId,
 _retrieveLocation(z.AreaId)

The second example (Q2) illustrates how the SASE lan-
guage can be used to express data transformation rules for ar-
chiving. Here, we use an event sequence query to detect a
change in location of an item and trigger a database update to
reflect the change. The EVENT, WHERE, and WITHIN clauses are
used to detect the location change. The RETURN clause calls a
system function _updateLocation to perform a location update in
the database. Internally, the event database stores the location of
an item using TimeIn and TimeOut attributes, representing
the duration of its stay. The _updateLocation function first sets
the TimeOut attribute of the current location using the
y.Timestamp value, and then creates a tuple for the new location
with the TimeIn attribute also set to the value of y.Timestamp.

Q2: EVENT SEQ(SHELF_READING x, SHELF_READING y)
WHERE x.id = y.id ∧ x.area_id != y.area_id
WITHIN 1 hour
RETURN _updateLocation(y.TagId, y.AreaId, y.Timestamp)

Several other queries that our language supports will be
shown through our demonstration, as described in Section 4.

2.1.2 Implementation
SASE is implemented using a query plan-based approach, that
is, a dataflow paradigm with pipelined operators as in relational
query processing. As such, it provides flexibility in query execu-
tion and extensibility as the event language evolves. This ap-
proach, however, employs a new abstraction for event query
processing. Specifically, we devise native sequence operators
based on a Non-deterministic Finite Automata based model
which can read query-specific event sequences efficiently from
continuously arriving events. These operators are then used to
form the foundation of each plan, pipelining the event sequences
to subsequent operators such as selection, window, negation,
etc. This arrangement allows the subsequent operators to be
implemented by leveraging relational techniques.

The new abstraction of event query processing also allows
us to optimize for two salient issues in complex event process-
ing: large sliding windows and intermediate result sets. Large
sliding windows spanning hours or days are commonly used in
monitoring applications. Sequence generation from events
widely dispersed in such windows can be an expensive opera-
tion. To address this issue, we develop optimizations that em-
ploy novel sequence indexes to expedite the sequence operators.
Large intermediate result sets also strongly affect query process-
ing. To reduce intermediate results, we strategically push some
of the predicates and windows down to the sequence operators;
the optimizations are based on indexing relevant events both in
temporal order and across value-based partitions. The interested
reader is referred to [9] for details of these techniques.

3. ARCHITECTURE
The architecture of the SASE system is shown in Figure 1. It
consists of three layers. The bottom layer contains physical
RFID devices (e.g. tags, readers). The RFID data returned from
RFID readers is passed to the next layer for data cleaning and
event generation. The event stream is then fed to the third layer

where most of the data processing takes place. A core compo-
nent of the layer is a complex event processor that processes the
event stream to deliver timely results to the user and archive
events into a database. Our system allows the user to query the
resulting event database by either sending ad-hoc queries or
writing continuous queries that combine stream processing and
database access. These components are described in more detail
below.

Physical Device Layer. The physical device layer consists
of RFID readers, antennas, and tags. RFID readers scan their
reading range in regular intervals and return a reading for each
detected tag in output. Each raw RFID reading consists of the
tag id and reader id. For our demonstration, we use a Mercury 4
Agile RFID Reader from Thingmagic and multiple antennas to
simulate multiple readers. Individual objects are tagged with
EPC Class1 Generation 2 tags from Alien Technology.

Cleaning and Association Layer. The Cleaning and Asso-
ciation Layer serves two important functions. First, it copes with
idiosyncrasies of readers and performs data cleaning, such as
filtering and smoothing. This is important as RFID readings are
known to be inaccurate and lossy. Our data cleaning component
is based on some of the techniques described in [8]. Second, it
uses attributes such as product name, expiration date, and sale-
able state to create events. This helps facilitate processing and
decision making in subsequent components. Internally, the
Cleaning and Association layer consists of five components:
(1) Anomaly Filtering Layer: removes spurious readings and

readings that contain truncated ids.
(2) Temporal Smoothing Layer: the system decides whether an

object was present at time t based not only on the reading at
time t, but also on the readings of this object in a window
size of w before t. Using this heuristic, a new reading may
be created.

(3) Time Conversion Layer: a timestamp is appended to each
reading based on a logical time unit that is set as a system
configuration parameter.

(4) Deduplication Layer: removes duplicates, which can be
caused either by a redundant setup, where two readers
monitor the same logical area, or when an item resides in
the overlapping area of the read ranges of two readers.

(5) Event Generation Layer: generates events according to a
pre-defined schema. An important step in event generation
is to obtain attributes defined in the schema. In an actual
real-world system, attributes (e.g., product name, expiration

date) can be retrieved from a tag’s user-memory bank or
from an Object Name Service (ONS) [6]. In our system,
we simulate an ONS with a local database storing product
metadata associated with each item.

Complex Event Processor. The complex event processor
supports continuous long-running queries written in the SASE
language over event streams. Specifically, it performs three
tasks.

• For each monitoring task such as detection of shoplifting,
the user writes a query and registers it as a continuous
query with the complex event processor. The event proces-
sor starts executing the query over the RFID stream right
away and returns a result (e.g., a notification) to the user
every time the query is satisfied. Such processing continues
until the query is deleted by the user.

• Transformation rules for data archiving are also registered
as continuous queries with the event processor. These que-
ries can be used to remove duplicate data and transform
data to the format required for archival. The resulting
events are streamed to the event database for storage.

• The event processor can further handle complex continuous
queries that integrate stream processing and database
lookup: upon detection of an event of interest, these queries
require database access to retrieve additional information,
as shown in Q1 in Section 2.1.1. The event processor sup-
ports these queries by first detecting the event, then sending
a subquery to the database, combining information re-
trieved from the database with that obtained from the
stream, and finally returning a complete result to the user.

Event Database. SASE contains a persistence storage com-
ponent to support querying over historical data and to allow
query results from the stream processor to be joined with stored
data. As mentioned in the previous section, RFID stream data is
transformed using rules declared with the complex event proces-
sor before archiving. Our system supports two important rules:
Location Update and Containment Update. For location update,
a tag’s location information is updated when we observe this tag
in a different location with a different timestamp. For contain-
ment updates, readings from unloading and loading zones are
aggregated into a containment relationship.

User Interface (UI). SASE has a UI that allows the user to
issue both continuous queries over the RFID stream and ad hoc
queries on the event database. It provides a visual presentation
for the query results as well as the internal data flow through
various SASE system components. The UI provides separate
windows for monitoring the events output by the Cleaning and
Association Layer, presenting results produced by the stream
processor, and displaying results from event database queries.

4. DEMONSTRATION SCENARIO
In this demonstration, we show (1) the expressiveness of the
SASE language through its uses for monitoring queries and data
transformation rules for archiving, (2) a complete data flow from
RFID devices through various SASE components to final query
output, and (3) track-and-trace queries over the event database.

Our demonstration is based on a simulation of a typical re-
tail management scenario. Our retail store setup consists of five
readers (antennas), with one reader in each of the following
locations: the storage room entrance (unloading zone), store
exit, two shelves, and the door between the storage room and the
selling area. One reader occupies only one logical area.

Using this setup, we first have a live demonstration where
actions (e.g. shoplifting, out-of-stock, or misplaced inventory)

Querying over history

RFID

Devices

Event
Database

Results

Continuous
queries

Ad hoc
queries

Querying over streams

Complex

Event Processor

Results

Figure 1: SASE System Architecture

Event
stream

Cleaning and Association

Tags

Readers

are simulated live in our retail-store setup. Continuous queries
monitor and detect these actions. Then we execute track-and-
trace queries over an event database that is collected in advance.

We execute the following SASE queries in the demo:
• Out-of-stock query: monitoring for an event where the

number of product items on a shelf falls below a threshold.
• Misplaced inventory query: monitoring for an event where

a shelf item is misplaced.
• Shoplifting query: monitoring for an event where an item

exits the system without passing the check-out counter.
• Archiving queries: specifying data transformation rules for

archiving, e.g., detecting an event representing a change in
location of an object and performing a database update.

For each of these queries, the individual query is first added
to the complex event processor. Then the actual behavior (e.g.
shoplifting, out-of-stock, or misplaced inventory) is simulated
live in our “retail store.” This results in the real-time detection
of the behavior and a notification from the SASE UI. For ex-
ample, consider the shoplifting query described in Section 2.1.1.
SASE generates an alert similar to the one in Figure 2. The
“Message Results” window (bottom left corner) provides the
fully processed output from the shoplifting query specified in
the “Present Queries” window (top left corner). The output re-
flects the result from the database query executed by the
_retrieveLocation() function specified in the RETURN clause
joined with x.TagId, x.ProdName, and z.AreaId values com-
puted by the stream query. On the top right side of the figure is
the “Cleaning and Association Layer Output” window to moni-
tor the event stream output of the Filtering and Association
Layer. Below this is the “Database Report” window, which dis-
plays the database query actually executed by the shoplifting
query and its result. Meanwhile, the x.TagId, x.ProdName, and
z.AreaId values computed by the SASE stream query are shown
in the “Stream Processor Output” window (below the “Database
Report” window). The UI uses these intermediate results to
provide a useful message to the user.

During the live demonstration we use the three windows on
the right in Figure 2 to display the intermediate results used to
compute final query output and to demonstrate SASE’s internal
data flow.

The second part of the demonstration is to run track-and-
trace queries over the event database. We use RFID data col-
lected in advance that simulates typical warehouse and retail
store workloads, such as loading/unloading items, stocking
shelves, and changing containments (e.g., moving items from
one box to another). These traces are collected at the physical
device level and fed to the complex event processing layer for
archival. We populate our event database with this RFID data,
and then run the following track-and trace queries:

• Movement history: find the location and containment
changes of an item.

• Missing item search: find out where a missing item was lost
(when the id of the missing item is known).

• Missing item detection: check for possible missing item
knowing the time when all objects were present.

Our demonstration also illustrates the use of track-and-trace
queries executed as a part of continuous queries.

5. REFERENCES
[1] Arasu, A., Babu, S., and Widom, J. CQL: A language for continu-

ous queries over streams and relations. In DBPL, 1-19, 2003.
[2] Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S.

Composite events for active databases: Semantics, contexts and
detection. In VLDB, 606-617, 1994.

[3] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J.,
Hellerstein, J.M., Hong, W., et al. TelegraphCQ: Continuous data-
flow processing for an uncertain world. In CIDR, 2003.

[4] Diao, Y., Sarma, S., and Krithnamurthy, V. Towards an RFID-
based information infrastructure. Under submission.

[5] Garfinkel, S. and Rosenberg, B. RFID: Applications, security, and
privacy. Addison-Wesley, 2006.

[6] MIT Auto-ID Lab. EPC network architecture. January 2006.
http://autoid.mit.edu/CS/files/3/networkarchitecture.

[7] Rizvi, S., Jeffery, S.R., Krishnamurthy, S., Franklin, M.J., et al.
Events on the edge. In SIGMOD, 885-887, 2005.

[8] Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., and Widom, J.
A pipelined framework for online cleaning of sensor data streams.
In ICDE, 140, 2006.

[9] Wu E., Diao Y., Rizvi S. High-performance Complex Event Proc-
essing over Streams. In SIGMOD, 407-418, 2006.

[10] Zimmer, D. and Unland, R. On the semantics of complex events in
active database management systems. In ICDE, 392-399, 1999

Figure 2: A screenshot of the SASE event processor

